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Ground state nonuniversality in the random-field Ising model
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Two attractive and often used ideas, namely, universality and the concept of a zero-temperature fixed point,
are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can
dependcontinuouslyon the disorder and so are nonuniversal. However, we also showattfiaite temperature
the thermal order-parameter exponent 1/2 is restored so that temperature is a relevant variable. Broader
implications of these results are discussed.
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Cooperative behavior in disordered systems can usually However, we also show that universality is restored at any
be concisely characterized using scaling theories. These scdinite temperature in the sense that at finite temperature the
ing theories contain scaling exponents and it is particularlyorder parameter exponent is always 1/2, when the transition
important and satisfying if these exponents are independeii continuous. This implies that another important concept in
of the fine details of the model, that is they are in some sens@isordered systems, the concept ofezo-temperature fixed
“universal.” If this holds it allows the theorists to study the Point is violated in this model. The origin of the concept of
simplest or most convenient model in a class in order to find® Zero-temperature fixed point is that disorder usually pro-
the scaling exponents and, more importantly, that experi¥ides a stronger perturbation than thermal fluctuations

ments should show the same exponents as the theory evéhich in turn are usually a stronger perturbation than quan-

though they may look very different on short length scalesfUm fluctuationg Thus a study of the ground states of disor-

Universality has been spectacularly successful in the study &ered systems can lead to scaling theories that are qualita-

phase transitions as a function of temperature, culminating iHver correct at finite temperatures. This IS _partlcularly
the development of the renormalization grddfh. There the attractive since there now exist methods for finding the exact

critical exponents, usually, only depend on the symmetry oeround states of many quenched_ ra}ndom sys{disIn the
’ ' ' . . ernacular of random systems it is often stated that there

the order parameter gnd the spatlgl dlmenspn. Due to th(?xis;ts a zero-temperature fixed point that controls the behav-
fact that scaling theories also work in many disordered sysi,, 4t finite temperature. In particular, in both the random-
tems it is natural to try t_o. extend the |fjeas that work so welkig|q Ising model[11—14 and in spin glasseR4], scaling
for thermal phase transitions to the disorder case. _theories are frequently based on the assumption of a zero-

Universality in disordered systems assumes that the critiiemperature fixed point. However, we show that the mean-
cal exponents shouldot depend on the type of disorder field theory of the random-field Ising modis not in gen-
provided the disorder distribution is short-range correlate(braL controlled by a zero-temperature fixed point.
and provided it is not too broad. Universality with respectto  We first demonstrate that the critical exponents can take
disorder has been confirmed in some systems, with notablen a range of values in the ground state of the random-field
examples being percolatig@] and the problem of a directed Ising model. The Hamiltonian for this model is
polymer in a random mediurf8]. However universality in
disordered systems is unproven in general and indeed it has
been questioned in the spin glass problem where there ap-
pears to be qualitative difference between the behavior in the
presence of Gaussian as compared to bimodal disgdder where the first sum is over all spin pairs ahg=J/N where
More recently universality has even been questioned in th&l is the number of sites in the lattice to ensure an extensive
random-field Ising modd]l5,6], which is one of the simplest €nergy. When the distribution of random fields is narrow, the
models of a disordered material. Moreover the experimenta§Xchange term dominates and the system is a ferromagnet
tests of the random-field Ising exponents rely on universalitylimensions greater than or equal t9, Svhile when the
[7,8] as the experiments are carried outdiluted antiferro- random-field distribution is broad the random field dom_l- _
magnets in a field9] that are expected to lie in the same natfas and the syste_m becomes a paramagnet. We take distri-
universality clasgthese experiments are also plagued by ki-Putions of random fields that have mean zero and wath
netic effects due to the large barriers that exist in randonnd consider the key ratitd=46h/J that measures the
magnets We show that universality fails in the ground state Stréngth of the random field in comparison to the exchange.
of the infinite-range random-field Ising model, as theo- Consider a spin subspace in which the magnetizatios

nents may vary continuouslyith the type of disorder. fixed, i.e.,m=(n.—n_)/N, wheren, is the number of up
spins in the configuration and_ is the number of down

spins. It is easy to find the lowest energy state for fired
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-J L, 0, —Jm? range random-field Ising model depends on the curvature of
Eedm=5z(ni+nZ-2n,n)=——. (2) the disorder distribution at the origin. Bimodal distributions

lead to a first order jump in the order parameter at low tem-

Due to the fact that the exchange is of infinite range, allPératuregand hence a tricritical point at finite temperagyre
Conﬁgurations at fixedn have the same energy and so areWhile unimodal distributions exhibit continuous transitions
combinatorially degenerate. The field term splits this degenwith exponent3=1/2, as originally found by Schneider and
eracy by choosing the configuration that has the smalledtytte [16] for the case of Gaussian disorder. However, we
field energy. This is achieved by satisfying the largest rannow show that the exponet=1/2 is not universalin the
dom fields and leaving the smallest possible fields unsatisground state. _ . .
fied. If the distribution of random fields iB(h) (which we We show thai3 may change continuously with the disor-
assume to be symmetric about the orjgithen in the large der, by considering the distribution of random fields given by
lattice limit, we have

LR
H

ith y=0. In the limit P(h if that a first
where the first term is the ideal field energy in which every\cl)vrldely beha:l/ioreism:alx);/);iZd (V\?ﬁéipl)ozm:t) E)%ksaliielrz:

spin is oriented in the direction of its local field, and the 5,,ssian near the origin so we expect a continuous transition

second term is the energy cost due to the fractions of field ith B=1/2. In the following discussion, we takk=1, so
Fhat are u_nsatisfied. The fract_iong of fields that are unsatisfie&atH has been normalized by The dist}ibution(8) is’the
is determined by the magnetization, first two terms in the expansion of the stretched exponential,
he(m) exd —(|h|/H)"] that has the same critical behavior as E).
m=2 j P(h)dh. (4) However, Eq.(6) can be solved exactly for the caé® to
0 yield (in addition tom=0),

Pyt
Ef=—2f0dhhp(h)+2f “ ahhReh), 3) ~2yH

h —H<h<H, (8
0

The ground state is found by determining the valuenof
which minimizes the energyl)—(3), given the constrain@).
Carrying out the variation yields

m=H(y(H.—H)®W for 1<H=<H, 9

where the critical field is given byd.=(y+1)/y. The lower
I(Eext+Ey) dhe(m) bound onH is due to the cutoff in Eq(8). For H<1, the
—om~ ImT2hd(mP(h(m)— = (5  exchange always wins and the magnetizatiomis1. From
Eq. (7), the second derivative is

By taking a derivative of Eq(4) with respect tan (using the

chain rulg we find, 1=2P(h(m))dh(m)/dm. Using this to P(Eoxt+Ey) yH

removedh,(m)/dm from the right-hand side of Eq5) and — =1+ (10
setting Eq.(5) to zero, we find that the cutoff field is related Jm m=0 y

to the magnetization vib(m)=Jm. Subsitution of this into

Eq. (4) yields theground-state mean-field equation Thus the curvature at zero magnetization changes from posi-

tive (@ minimum for H>H, to negative forH<H.. It is
also easy to show that the solution is always a minimum.
Evaluating the energies at the three solutians=0, m
=mg, m=1 yields a behavior typified by Fig.(4. For H
This equation gives the magnetization values at which the>H., the ground state ham=0 and the system is a para-
energy is extremal. Note tha=0 (the paramagngts al-  magnet, for =H<H_, the ground state has=mjg and is
ways an extremum, as expected. Since we are treating thaagnetized, while forH<1, the magnetization saturates.
case of symmetric random fields, we can restrict attention t@his behavior is summarized in the phase diagram of Fig.
the case whereOm=1. To determine whether an extrema 1(b). The critical exponeng=1/y on this upper curve in this

is a maximum or a minimum, we need to evaluate the curfigure and is clearlynonuniversal in the ground state

Jm
mzzfo P(h)dh. (6)

vature near the extremum, However, when the transition is continuous, Aharpby]
) has demonstrated that at finite temperat@rel/2 based on
I (EextBp) | _ i+ 1 @ the mean-field equation for the random-field Ising model,
am? m 2P(hc( ms)) .
S o0
) ) . m=J dhP(h)tankm/T+h/T). (11
Finally, in order to determine the ground state, we need to —oo

compare the free energies of the solutions to the mean-field

equation(4) with the energy of the magnetized state ima., We now reconcile the ground-state res(8 found above

=1. with the finite temperature behavior found from equation
An elegant result due to Aharon{t5] states that the na- (11). Assuming thaP(h) is symmetric, equatiofil1l) can be

ture of the finite temperature phase transition in the infiniteteduced to
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FIG. 1. (a) The ground-state energy as a function of the width of
the magnetic field distributioHl, for the case/=1/2. The flat curve
is for m=1, the linearly decreasing curve is for=0, while the
third curve is for the solutiomg given in Eq.(9) of the text.(b) The

upper curve is the dependence of the critical field on the exponent

in the field distribution[i.e., H=(y+1)/y]. Above this line the
magnetization is zero. The lower line i$=1, below which the
magnetization is saturatéde. m=1 for H<1). Between these two
lines the magnetization obeys E®) of the text, with the magne-
tization going to zero with exponentylat the upper curve.

o P(h)dh
cosh2h/T) °

coshiz2m/T)

m=2 tanNZm/T)f (12

0

From this expression, it is seen that there are two regimes

m/T>1 andm/T<1. At zero temperature only the first re-

gime holds, while at any finite temperature the second re-""

gime is applicable very close to the critical point.
Whenm/T>1, tanhWT)—1 and cosh@T)/cosh(2n/T)
—exd2(h—m)/T], which yields

[’

- P(h)dh
m= fo 1+exg2(h—m)/T]

miT—o. (13

Now note that this expression looks like a Sommerfeld inte-
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However, at any finite temperature, there is a regime in
which the magnetization is small compared to the tempera-
ture,m/T<1. In that case, coshf@T)—1, and Eq.(11) re-
duces to the mean-field theory for the thermal transition, but
with a renormalized coefficient that depends on the field dis-
tribution, i.e.,

m=2I(H,T)tan(2m/T), m/T—0, (19
where
(= P(h)dh
|(H,T)—fo Wm (15)

Note that there is a factor of 2 difference in the argument of
the tanh as compared to the thermal mean-field theory. How-
ever the critical temperature and critical exponent are the
same. For any finite temperature, providaek T, an expan-
sion to third order irm of Eq. (14) shows that the magneti-
zation approaches zero with expong@at 1/2. Moreover, Eq.
(14) with (15) shows that the critical field and temperature
are related to each other through the relation

T=41(H(T),T),

(16)

0.

0.

(@)™

(b) 0.2 Field

FIG. 2. (a) The magnetization as a function of the width of the

gral for the free Fermi gas, with the Fermi energy given by,random field(H) for y=1/2, for two temperatures. The upper curve

e;=m. The leading term at low temperatures is then the

s for zero temperature, while the lower curve is Tor 0.2. (b) The

integral of P(h) up to the Fermi energy, and hence is equiva-H-T phase diagranmiT vs H.(T)/H.(0)] for y=2 (upper curve

lent to the ground state result given in E§).

andy=1/2 (lower curve found from solving Eq(17) of the text.
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provided the magnetization is continuous at the transitionstate is atypical and should not be expected unless the disor-
For the probability distribution given in E@8), this reduces der distribution is quadratic near the origin. Finite tempera-
to ture introduces thermal fluctuations that are also Gaussian,
H.(T) H.(T) T W M xYdx yvhich i; the reason that the Gaussian distribution of disorder
¢ =tan}{ c }_[ } f ¢ _ is special and atypical.

H¢(0) T 2H(T) ] Jo 1+ coshx) At first blush, our results raise serious questions about
17 scaling theories of disordered systems based on a zero-

temperature fixed point, and about the applicability of nu-
merical studies in the ground state to finite temperature prop-

nent in the ground state is different from that at finite tem_ernes.dH(r)]wever, th'.s m?y not tf)_el(;heh corre((j:t co_r;clgs;:)n.
peratures, and clearly illustrates the fact that temperature is'3St€ad the conventional mean-field theory described here
relevant variable. The temperature-field phase diagram {212y Pe pathological and not typical of the behavior in finite
presented in Fig. ) for the two casey=1/2 andy=2. dimensions. That itself would be a rather surprising result,
There is a sharp shift in the phase boundary with temperatur&hich, for example, could be due to a renormalization of the
for cases wherg is small (rapidly decaying field distribu- disorder distribution to a Gaussian under rescaling in finite
tions near the origin which is strong indicator that tempera- dimensions. These issues can only be resolved by careful
ture is relevant. studies of universality to disorder in finite dimensions, which
We have demonstrated the failure of universality in theis a difficult task except at zero temperature where exact
ground state of the mean-field theory of the random-fieldhumerical calculations are possible.
Ising model. In addition the concept of a zero-temperature
fixed point is invalid. The fact that the Gaussian distribution = This work has been supported by the DOE under Contract
of random fields does have exponed=1/2 in the ground No. DE-FG02-90ER45418.

The magnetization as a function of field is given in Figg)2
for y=1/2. From this figure it is seen that the critical expo-
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