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Ground state nonuniversality in the random-field Ising model
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Two attractive and often used ideas, namely, universality and the concept of a zero-temperature fixed point,
are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can
dependcontinuouslyon the disorder and so are nonuniversal. However, we also show thatat finite temperature
the thermal order-parameter exponent 1/2 is restored so that temperature is a relevant variable. Broader
implications of these results are discussed.
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Cooperative behavior in disordered systems can usu
be concisely characterized using scaling theories. These
ing theories contain scaling exponents and it is particula
important and satisfying if these exponents are indepen
of the fine details of the model, that is they are in some se
‘‘universal.’’ If this holds it allows the theorists to study th
simplest or most convenient model in a class in order to fi
the scaling exponents and, more importantly, that exp
ments should show the same exponents as the theory
though they may look very different on short length scal
Universality has been spectacularly successful in the stud
phase transitions as a function of temperature, culminatin
the development of the renormalization group@1#. There the
critical exponents, usually, only depend on the symmetry
the order parameter and the spatial dimension. Due to
fact that scaling theories also work in many disordered s
tems it is natural to try to extend the ideas that work so w
for thermal phase transitions to the disorder case.

Universality in disordered systems assumes that the c
cal exponents shouldnot depend on the type of disorde,
provided the disorder distribution is short-range correla
and provided it is not too broad. Universality with respect
disorder has been confirmed in some systems, with not
examples being percolation@2# and the problem of a directe
polymer in a random medium@3#. However universality in
disordered systems is unproven in general and indeed it
been questioned in the spin glass problem where there
pears to be qualitative difference between the behavior in
presence of Gaussian as compared to bimodal disorder@4#.
More recently universality has even been questioned in
random-field Ising model@5,6#, which is one of the simples
models of a disordered material. Moreover the experime
tests of the random-field Ising exponents rely on universa
@7,8# as the experiments are carried out ondiluted antiferro-
magnets in a field@9# that are expected to lie in the sam
universality class~these experiments are also plagued by
netic effects due to the large barriers that exist in rand
magnets!. We show that universality fails in the ground sta
of the infinite-range random-field Ising model, as theexpo-
nents may vary continuouslywith the type of disorder.
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However, we also show that universality is restored at a
finite temperature in the sense that at finite temperature
order parameter exponent is always 1/2, when the transi
is continuous. This implies that another important concep
disordered systems, the concept of azero-temperature fixed
point, is violated in this model. The origin of the concept
a zero-temperature fixed point is that disorder usually p
vides a stronger perturbation than thermal fluctuatio
~which in turn are usually a stronger perturbation than qu
tum fluctuations!. Thus a study of the ground states of diso
dered systems can lead to scaling theories that are qua
tively correct at finite temperatures. This is particular
attractive since there now exist methods for finding the ex
ground states of many quenched random systems@10#. In the
vernacular of random systems it is often stated that th
exists a zero-temperature fixed point that controls the beh
ior at finite temperature. In particular, in both the rando
field Ising model@11–14# and in spin glasses@4#, scaling
theories are frequently based on the assumption of a z
temperature fixed point. However, we show that the me
field theory of the random-field Ising modelis not, in gen-
eral, controlled by a zero-temperature fixed point.

We first demonstrate that the critical exponents can t
on a range of values in the ground state of the random-fi
Ising model. The Hamiltonian for this model is

H52J0(
i j

SiSj2(
i

hiSi5NEex1NEf , ~1!

where the first sum is over all spin pairs andJ05J/N where
N is the number of sites in the lattice to ensure an extens
energy. When the distribution of random fields is narrow,
exchange term dominates and the system is a ferromagne~in
dimensions greater than or equal to 3!, while when the
random-field distribution is broad the random field dom
nates and the system becomes a paramagnet. We take d
butions of random fields that have mean zero and widthdh,
and consider the key ratioH5dh/J that measures the
strength of the random field in comparison to the exchan

Consider a spin subspace in which the magnetizationm is
fixed, i.e.,m5(n12n2)/N, wheren1 is the number of up
spins in the configuration andn2 is the number of down
spins. It is easy to find the lowest energy state for fixedm.
The exchange energy is given by
©2001 The American Physical Society12-1
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Eex~m!5
2J

2N2 ~n1
2 1n2

2 22n1n2!5
2Jm2

2
. ~2!

Due to the fact that the exchange is of infinite range,
configurations at fixedm have the same energy and so a
combinatorially degenerate. The field term splits this deg
eracy by choosing the configuration that has the sma
field energy. This is achieved by satisfying the largest r
dom fields and leaving the smallest possible fields unsa
fied. If the distribution of random fields isP(h) ~which we
assume to be symmetric about the origin!, then in the large
lattice limit, we have

Ef522E
0

`

dhhP~h!12E
0

hc(m)

dhhP~h!, ~3!

where the first term is the ideal field energy in which eve
spin is oriented in the direction of its local field, and th
second term is the energy cost due to the fractions of fie
that are unsatisfied. The fractions of fields that are unsatis
is determined by the magnetization,

m52E
0

hc(m)

P~h!dh. ~4!

The ground state is found by determining the value ofm
which minimizes the energy~1!–~3!, given the constraint~4!.
Carrying out the variation yields

]~Eex1Ef !

]m
52Jm12hc~m!P„hc~m!…

]hc~m!

]m
. ~5!

By taking a derivative of Eq.~4! with respect tom ~using the
chain rule! we find, 152P„hc(m)…]hc(m)/]m. Using this to
remove]hc(m)/]m from the right-hand side of Eq.~5! and
setting Eq.~5! to zero, we find that the cutoff field is relate
to the magnetization viahc(m)5Jm. Subsitution of this into
Eq. ~4! yields theground-state mean-field equation

m52E
0

Jm

P~h!dh. ~6!

This equation gives the magnetization values at which
energy is extremal. Note thatm50 ~the paramagnet! is al-
ways an extremum, as expected. Since we are treating
case of symmetric random fields, we can restrict attentio
the case where 0<m<1. To determine whether an extrem
is a maximum or a minimum, we need to evaluate the c
vature near the extremum,

]2~Eex1Ef !

]m2 U
ms

52J1
1

2P„hc~ms!…
. ~7!

Finally, in order to determine the ground state, we need
compare the free energies of the solutions to the mean-
equation~4! with the energy of the magnetized state i.e.,m
51.

An elegant result due to Aharony@15# states that the na
ture of the finite temperature phase transition in the infin
03611
ll

-
st
-
s-

s
ed

e

he
to

r-

o
ld

-

range random-field Ising model depends on the curvatur
the disorder distribution at the origin. Bimodal distribution
lead to a first order jump in the order parameter at low te
peratures~and hence a tricritical point at finite temperature!,
while unimodal distributions exhibit continuous transitio
with exponentb51/2, as originally found by Schneider an
Pytte @16# for the case of Gaussian disorder. However,
now show that the exponentb51/2 is not universalin the
ground state.

We show thatb may change continuously with the diso
der, by considering the distribution of random fields given

P~h!5
y11

2yH F12S uhu
H D yG 2H<h<H, ~8!

with y>0. In the limity→` P(h)→(uniform) so that a first
order behavior is expected, while ify→2 it looks like a
Gaussian near the origin so we expect a continuous trans
with b51/2. In the following discussion, we takeJ51, so
that H has been normalized byJ. The distribution~8! is the
first two terms in the expansion of the stretched exponen
exp@2(uhu/H)y# that has the same critical behavior as Eq.~8!.
However, Eq.~6! can be solved exactly for the case~8! to
yield ~in addition tom50),

ms5H„y~Hc2H !…1/y for 1<H<Hc , ~9!

where the critical field is given by,Hc5(y11)/y. The lower
bound onH is due to the cutoff in Eq.~8!. For H,1, the
exchange always wins and the magnetization ism51. From
Eq. ~7!, the second derivative is

]2~Eex1Ef !

]m2 U
m50

5211
yH

y11
. ~10!

Thus the curvature at zero magnetization changes from p
tive ~a minimum! for H.Hc to negative forH,Hc . It is
also easy to show that the solutionms is always a minimum.
Evaluating the energies at the three solutionsm50, m
5ms , m51 yields a behavior typified by Fig. 1~a!. For H
.Hc , the ground state hasm50 and the system is a para
magnet, for 1<H<Hc , the ground state hasm5ms and is
magnetized, while forH,1, the magnetization saturate
This behavior is summarized in the phase diagram of F
1~b!. The critical exponentb51/y on this upper curve in this
figure and is clearlynonuniversal in the ground state.

However, when the transition is continuous, Aharony@15#
has demonstrated that at finite temperatureb51/2 based on
the mean-field equation for the random-field Ising model

m5E
2`

`

dhP~h!tanh~m/T1h/T!. ~11!

We now reconcile the ground-state result~9! found above
with the finite temperature behavior found from equati
~11!. Assuming thatP(h) is symmetric, equation~11! can be
reduced to
2-2
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m52 tanh~2m/T!E
0

` P~h!dh

11
cosh~2h/T!

cosh~2m/T!
)

. ~12!

From this expression, it is seen that there are two regim
m/T@1 andm/T!1. At zero temperature only the first re
gime holds, while at any finite temperature the second
gime is applicable very close to the critical point.

Whenm/T@1, tanh(m/T)→1 and cosh(2h/T)/cosh(2m/T)
→exp@2(h2m)/T#, which yields

m52E
0

` P~h!dh

11exp@2~h2m!/T#
m/T→`. ~13!

Now note that this expression looks like a Sommerfeld in
gral for the free Fermi gas, with the Fermi energy given
e f5m. The leading term at low temperatures is then
integral ofP(h) up to the Fermi energy, and hence is equiv
lent to the ground state result given in Eq.~6!.

FIG. 1. ~a! The ground-state energy as a function of the width
the magnetic field distributionH, for the casey51/2. The flat curve
is for m51, the linearly decreasing curve is form50, while the
third curve is for the solutionms given in Eq.~9! of the text.~b! The
upper curve is the dependence of the critical field on the expo
in the field distribution@i.e., H5(y11)/y#. Above this line the
magnetization is zero. The lower line isH51, below which the
magnetization is saturated~i.e. m51 for H,1). Between these two
lines the magnetization obeys Eq.~9! of the text, with the magne-
tization going to zero with exponent 1/y at the upper curve.
03611
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However, at any finite temperature, there is a regime
which the magnetization is small compared to the tempe
ture, m/T!1. In that case, cosh(2m/T)→1, and Eq.~11! re-
duces to the mean-field theory for the thermal transition,
with a renormalized coefficient that depends on the field d
tribution, i.e.,

m52I ~H,T!tanh~2m/T!, m/T→0, ~14!

where

I ~H,T!5E
0

` P~h!dh

11cosh~2h/T!
. ~15!

Note that there is a factor of 2 difference in the argument
the tanh as compared to the thermal mean-field theory. H
ever the critical temperature and critical exponent are
same. For any finite temperature, providedm!T, an expan-
sion to third order inm of Eq. ~14! shows that the magneti
zation approaches zero with exponentb51/2. Moreover, Eq.
~14! with ~15! shows that the critical field and temperatu
are related to each other through the relation

T54I „Hc~T!,T…, ~16!

FIG. 2. ~a! The magnetization as a function of the width of th
random field~H! for y51/2, for two temperatures. The upper curv
is for zero temperature, while the lower curve is forT50.2. ~b! The
H-T phase diagram@T vs Hc(T)/Hc(0)# for y52 ~upper curve!
andy51/2 ~lower curve! found from solving Eq.~17! of the text.
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provided the magnetization is continuous at the transiti
For the probability distribution given in Eq.~8!, this reduces
to

Hc~T!

Hc~0!
5tanhFHc~T!

T G2F T

2Hc~T!G
yE

0

2Hc(T)/T xydx

11cosh~x!
.

~17!

The magnetization as a function of field is given in Fig. 2~a!
for y51/2. From this figure it is seen that the critical exp
nent in the ground state is different from that at finite te
peratures, and clearly illustrates the fact that temperature
relevant variable. The temperature-field phase diagram
presented in Fig. 2~b! for the two casesy51/2 andy52.
There is a sharp shift in the phase boundary with tempera
for cases wherey is small ~rapidly decaying field distribu-
tions near the origin!, which is strong indicator that tempera
ture is relevant.

We have demonstrated the failure of universality in t
ground state of the mean-field theory of the random-fi
Ising model. In addition the concept of a zero-temperat
fixed point is invalid. The fact that the Gaussian distributi
of random fields does have exponentb51/2 in the ground
a-
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state is atypical and should not be expected unless the d
der distribution is quadratic near the origin. Finite tempe
ture introduces thermal fluctuations that are also Gauss
which is the reason that the Gaussian distribution of disor
is special and atypical.

At first blush, our results raise serious questions ab
scaling theories of disordered systems based on a z
temperature fixed point, and about the applicability of n
merical studies in the ground state to finite temperature pr
erties. However, this may not be the correct conclusi
Instead the conventional mean-field theory described h
may be pathological and not typical of the behavior in fin
dimensions. That itself would be a rather surprising res
which, for example, could be due to a renormalization of
disorder distribution to a Gaussian under rescaling in fin
dimensions. These issues can only be resolved by car
studies of universality to disorder in finite dimensions, whi
is a difficult task except at zero temperature where ex
numerical calculations are possible.
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